Problem 1. (1 point) METUNCC/Applied_Math/fourier/R_coeffs.pg
Suppose that $f(t)$ is periodic with period $[-\pi, \pi)$ and has the following real Fourier coefficients: $a_{0}=-2, \quad a_{1}=-1, \quad a_{2}=-2, \quad a_{3}=4, \quad \cdots$
$b_{1}=2, \quad b_{2}=-3, \quad b_{3}=-3, \quad \ldots$
(A) Write the beginning of the real Fourier series of $f(t)$ (through frequency 3):
$f(t)=$ \qquad
(B) Give the real Fourier coefficients for the following functions:
(i) The derivative $f^{\prime}(t)$

(ii) The function $f(t)+1$

(iii) The antiderivative of $(f(t)+1)$ (with $C=0$)
$a_{0}=\longrightarrow, a_{1}=\underset{b_{1}=}{ }, a_{2}=\underset{b_{2}=}{ }, a_{3}=\underset{b_{3}=}{ }, \ldots$
(iv) The function $f(t)+2 \sin (t)+2 \cos (2 t)$
$a_{0}=$ \qquad $a_{1}=$ $\longrightarrow, a_{2}=\longrightarrow, a_{3}=$ $-b_{3}=$ —, ...
(iv) The function $f(2 t)$

Problem 2. (1 point) METUNCC/Applied_Math/fourier/C_coeffs.pg
Suppose that $f(t)$ is periodic with period $[-\pi, \pi)$ and has the following complex Fourier coefficients:
$\ldots \quad c_{0}=2, \quad c_{1}=3-4 i, \quad c_{2}=-4 i, \quad c_{3}=-1+2 i, \quad \ldots$
(A) Compute the following complex Fourier coefficients.
$c_{-3}=$ \qquad $c_{-2}=$ \qquad $c_{-1}=$ \qquad
(B) Compute the real Fourier coefficients. (Remember that $e^{i k t}=\cos (k t)+i \sin (k t)$.)
$a_{0}=\ldots, a_{1}=\underset{b_{1}=\ldots, a_{2}=\ldots, a_{3}=\ldots, \ldots}{ }, b_{3}=\ldots, \ldots$
(C) Compute the complex Fourier coefficients of the following.
(i) The derivative $f^{\prime}(t)$.
\qquad
(ii) The shifted function $f\left(t+\frac{\pi}{6}\right)$
$c_{0}=$ \qquad , $c_{1}=$ \qquad
$c_{2}=$ \qquad $c_{3}=$ \qquad
(iii) The function $f(3 t)$.
$c_{0}=\ldots, \quad c_{1}=\ldots, \quad c_{2}=\ldots, \quad c_{3}=$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

