Benjamin Walter Assignment Continous_Fourier due 01/19/2022 at 02:11pm EET

Problem 1. (1 point) METUNCC/Applied_Math/fourier/R_coeffs.pg

Suppose that f(t) is periodic with period $[-\pi, \pi)$ and has the following **real** Fourier coefficients: $a_0 = -2, \quad a_1 = -1, \quad a_2 = -2, \quad a_3 = 4, \quad \dots$ $b_1 = 2, \quad b_2 = -3, \quad b_3 = -3, \quad \dots$

(A) Write the beginning of the real Fourier series of f(t) (through frequency 3): f(t) =_____

(B) Give the real Fourier coefficients for the following functions:

(i) The derivative f'(t) $a_0 = _, a_1 = _, a_2 = _, a_3 = _, ...$ $b_1 = _, b_2 = _, b_3 = _, ...$

(ii) The function f(t) + 1 $a_0 = _, a_1 = _, a_2 = _, a_3 = _, ...$ $b_1 = _, b_2 = _, b_3 = _, ...$

(iii) The antiderivative of (f(t) + 1) (with C = 0) $a_0 = _, a_1 = _, a_2 = _, a_3 = _, ...$ $b_1 = _, b_2 = _, b_3 = _, ...$

(iv) The function $f(t) + 2\sin(t) + 2\cos(2t)$ $a_0 = _, a_1 = _, a_2 = _, a_3 = _, ...$ $b_1 = _, b_2 = _, b_3 = _, ...$

(iv) The function f(2t) $a_0 = _, a_1 = _, a_2 = _, a_3 = _, ...$ $b_1 = _, b_2 = _, b_3 = _, ...$

Problem 2. (1 point) METUNCC/Applied_Math/fourier/C_coeffs.pg

Suppose that f(t) is periodic with period $[-\pi, \pi)$ and has the following **complex** Fourier coefficients: ... $c_0 = 2$, $c_1 = 3 - 4i$, $c_2 = -4i$, $c_3 = -1 + 2i$, ...

(A) Compute the following complex Fourier coefficients.

 $c_{-3} =$ ____, $c_{-2} =$ ____, $c_{-1} =$ ____

(B) Compute the real Fourier coefficients. (Remember that $e^{ikt} = \cos(kt) + i\sin(kt)$.) $a_0 = \underline{\qquad}, a_1 = \underline{\qquad}, a_2 = \underline{\qquad}, a_3 = \underline{\qquad}, \dots$ $b_1 = \underline{\qquad}, b_2 = \underline{\qquad}, b_3 = \underline{\qquad}, \dots$

(C) Compute the complex Fourier coefficients of the following.

(i) The derivative f'(t). $c_0 = _$, $c_1 = _$, $c_2 = _$, $c_3 = _$ (ii) The shifted function $f\left(t + \frac{\pi}{6}\right)$ $c_0 = _$, $c_1 = _$, $c_3 = _$ (iii) The function f(3t). $c_0 = _$, $c_1 = _$, $c_2 = _$, $c_3 = _$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America